Preparing Steel for Coatings

Feasibility Study of Two Alternative Surface Preparation Methods for Bridge Maintenance

Northeast Bridge Preservation Partnership Portland, Maine September 23-25, 2013

Peter Weykamp, P.E.

Overview

- Investigate options for the preparation of coated steel bridge for maintenance re-coating.
- Determine methods & materials suitable for implementation by bridge crews.
- Evaluate the health & environmental effects with oversight agencies.
- Advance promising methods to field applications.
- Specifications & guidelines

Long-term Goal

- Reduce the number of priority repair needs due to the section loss of steel.
- Develop a sustainable spot painting program for bridge maintenance crews.
- Industry, research, & field trials lead to refinement of specifications & guidance.
- Extend the service life of existing coatings.
- Maintenance of coatings is included in offthe-shelf bridge management systems.

The Present Situation

- More than ½ of all structural repair needs discovered through the bridge inspection process are because of section loss.
- Bridge crews are not involved with maintaining the coating system.
- All coatings tested by NEPCOAT were applied to SP-10 surface.
- Approved coatings require SP-10 surfaces.
- Contract painting programs are not keeping up with the needs.
- Transportation agencies have not kept pace with methods & materials implemented in other industries.

Development up to Present

- Crews use shrouded hand tools to prepare steel for coating.
- Open dry abrasive blasting is prohibited in agreement with environmental and health & safety oversight agencies.
- The post Pb coating system was based on a moisture cure primer. The anticipated service life was over estimated.
- Estimates of service life with zinc-based primer systems seem realistic.

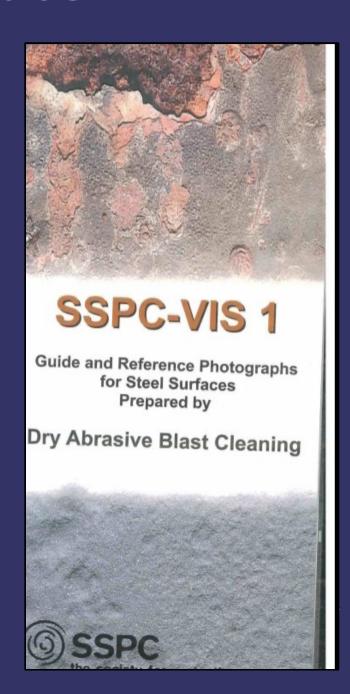
3. 200

Potential Alternatives

- Increase funding of the bridge painting program and use existing specifications.
- Further develop the use of existing steel preparation techniques.
- Purchase Class A containment equipment for use by state crews.
- Investigate alternative corrosion protection systems.
- Use coatings designed for minimally prepared surfaces.
- Implement "dust-free" blasting strategies.

Field Trials

- Air Quality Monitoring
- Production rates
- Environmental concerns
- Containment design
- Equipment costs
- Implementability


0.1 to 10 microns

- 3 Air Quality
 Monitors DataRAMs
- Respirable aerosos
- Upwind, downwind inside containment

SSPS/NACE Guides

- Developed for various surface preparation methods
- Start with Begin Condition
- Coatings recommended for End Condition
- SP-3 describes an end condition in SSPC-VIS 3 Power & Hand Tool Cleaning
- SP-10 (Near-white metal) VIS1 Dry Abrasive Blast
- Numbering is not sequential

Wet Blasting

7,2000 psi

6 gal/minute

Heated water

180°F – thermal shock

O Rotating tip

275 gal water tank

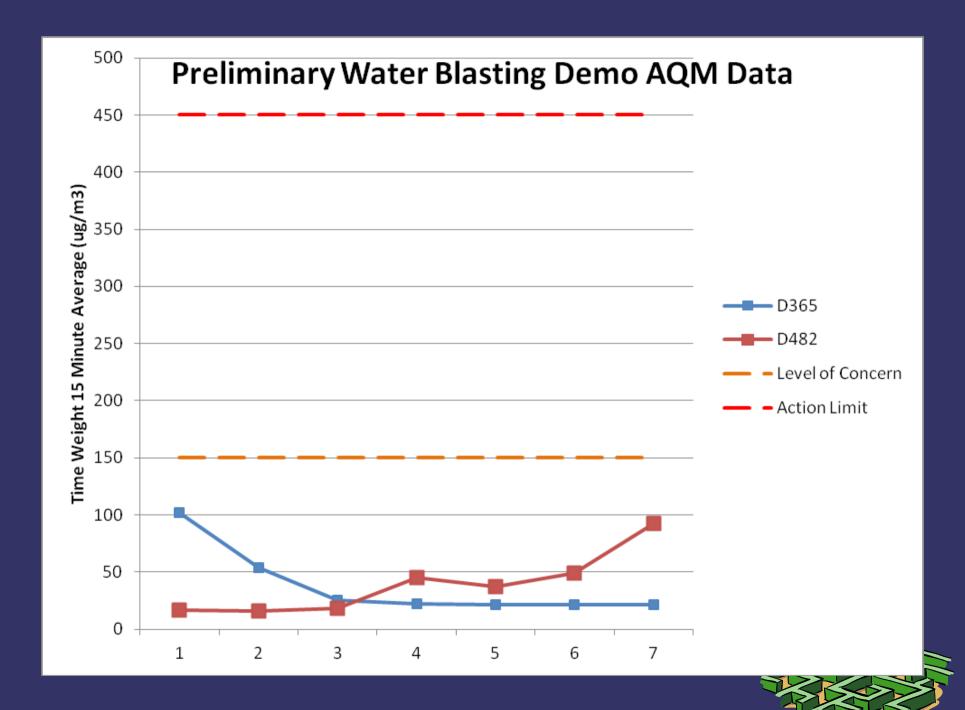
Ground tarp

SSPC-VIS 4 Waterjet

Begin Condition C

<10k psi</p>

Findings



- Dust-free
- Restored profile
- End Condition G WJ-3
- PPE face shield
- Waste water
 - filtration system

Pb bleeds

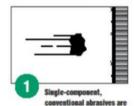
- Forced-air to dry
- Regains profile
- Production rate

5 - 14 sq ft/minute.

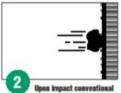
Feasibility

- Equipment
 - \$27k own
 - \$5k/month rent
- Coating for SP-3
 - One coat
- Dry time
 - Evaporation
 - Air dry crevices
- CI removal
- Waste water
 - Reduced volume
 - Settlement basin?

Sponge Blasting



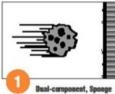
- Blast pot & Re-cycler
- 375 CFM compressor
- Sized grit embedded
 - Recyclable
 - 8 12 times
- Blast medium
 - \$100 1.5 cu ft/bag
- Containment
 - Medium collection
- SSPC VIS 1
 - Dry Abrasive
 - Begin Condition G1, G2


Comparing Abrasive Blasting Technologies

Conventional Abrasive Blasting Media

propelled to the surface

using an air-driven system


abrasives...

Absorb the high-speed collision

- Absorb the high-speed collision by fracturing and ricocheting into the air
- Transfer heat to the substrate
- Strip the complete coating system

Conventional abrasives release all fractured abrasives, contaminants, and coating layers as airborne dust

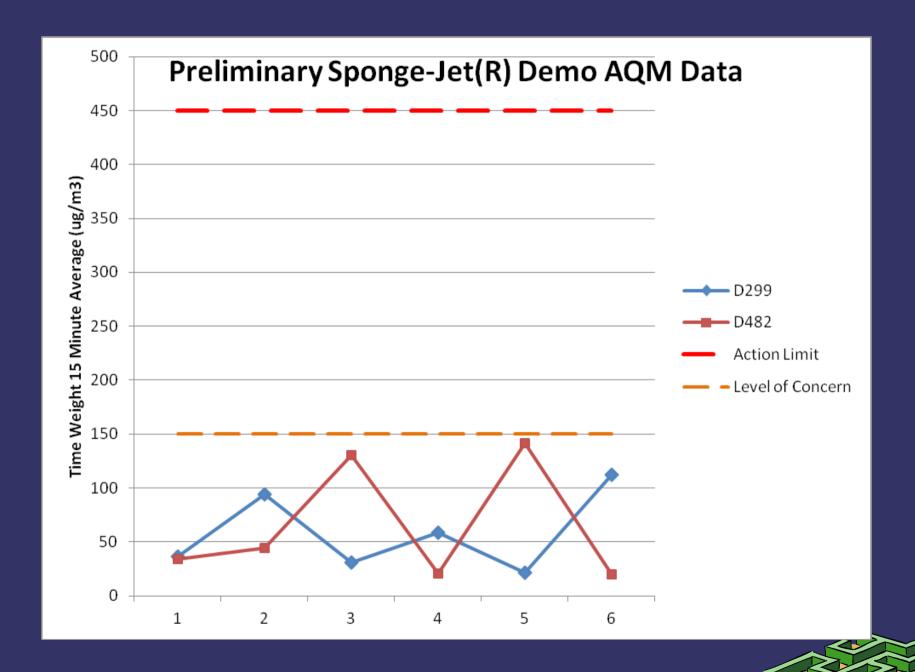
Conventional Abrasive Bonded Into Sponge Media

Media abrasives are propelled to the surface using an air-driven system

Upon impact Sponge Media abrasives...

- Absorb collision energy
 Flatten and suppress the release of loosened surface contaminants
- Expose its abrasives with little abrasive fracturing and remove contaminants
- Selectively or completely strip the coating system and profile the substrate

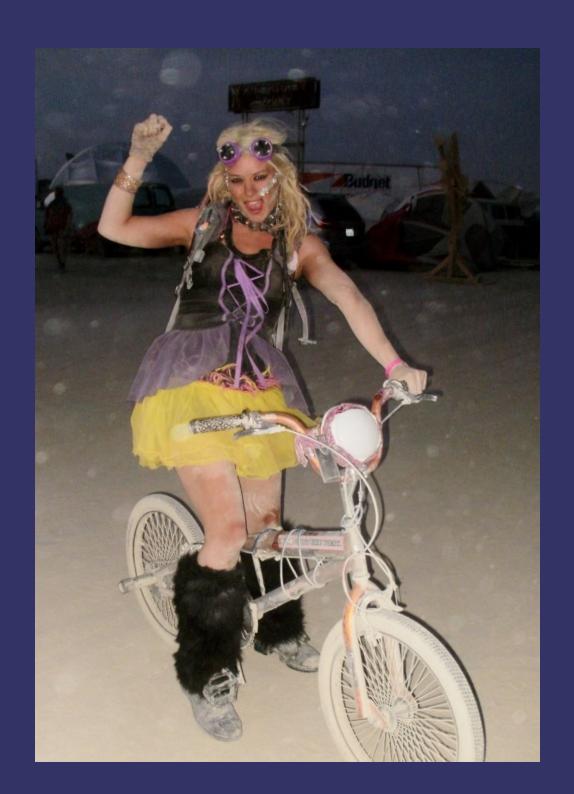
Sponge Media abrasives entrap most of what would normally have become airborne dust



Results

- Reduced emissions
- Creates profile
- Removes mill scale
- End Condition SP-10
- Rinse required
- PPE
 - HEPA full-face mask
 - Tyvek & sealed seams
- Production rate:
 - 8 sq ft/min brush blast
 - 2 sq ft/min SP-10

Feasibility



- Equipment
 - \$34k own
 - \$3k / month rent
- All coatings
- CI removal
- Ventilation Type J1
 - Dust collector
 - \$1,200
- Containment
 - SSPC Class 3
 - Penetrable wall, overlap seams
- Waste
 - Minimal

Recommendation

- "Dust-free/reducing" technologies are feasible for bridge maintenance operations.
- Advance technologies to field applications
 - Demonstrations
- Environmental & Health agency buy-in
- Determine service life extension with implementation of spot painting program.
 - Benefit / cost calculations
- Develop RNS
- Create specifications & standards that facilitate spot painting.

THANK YOU

QUESTIONS or COMMENTS

Peter Weykamp, P.E. peterweykamp@outlook.com

